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Gene Prediction: Computational Challenge 
 

aatgcatgcggctatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaa
tgcatgcggctatgcaagctgggatccgatgactatgctaagctgggatccgatgacaatgcatgcggctatgc
taatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatga
atggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgc
ggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatg
cggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatc
ctgcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcgg
ctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggaatgcatg
cggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatc
cgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcatgcggctatgctaagctggg
aatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaag
ctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcggctatgctaatga
atggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtc
ttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgg
gatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagc
tgcggctatgctaatgcatgcggctatgctaagctcatgcgg 

 



Gene Prediction: Computational Challenge 
 

aatgcatgcggctatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaa
tgcatgcggctatgcaagctgggatccgatgactatgctaagctgggatccgatgacaatgcatgcggctatgc
taatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatga
atggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgc
ggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatg
cggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatc
ctgcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcgg
ctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggaatgcatg
cggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatc
cgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcatgcggctatgctaagctggg
aatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaag
ctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcggctatgctaatga
atggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtc
ttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgg
gatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagc
tgcggctatgctaatgcatgcggctatgctaagctcatgcgg 

 

         Gene! 



Genes to Proteins 





Bacterial Gene Finding and Glimmer 
(also Archaeal and viral gene finding) 

Arthur L. Delcher and Steven Salzberg 
Center for Bioinformatics and Computational Biology 

Johns Hopkins University School of Medicine 



Outline 
•  A (very) brief overview of microbial gene-finding 

•  Glimmer1 & 2 
–  Interpolated Markov Model (IMM) 
–  Interpolated Context Model (ICM) 

•  Glimmer3 
– Reducing false positives 
–  Improving coding initiation site predictions 
– Running Glimmer3 



Step One 

•  Find open reading frames (ORFs). 
 

…TAGATGAATGGCTCTTTAGATAAATTTCATGAAAAATATTGA… 

Stop 
codon 

Stop 
codon 

Start 
codon 



Step One 

•  Find open reading frames (ORFs). 
 
 
 
 
 
 
 
 

•  But ORFs generally overlap … 

…TAGATGAATGGCTCTTTAGATAAATTTCATGAAAAATATTGA… 

Stop 
codon 

Stop 
codon 

…ATCTACTTACCGAGAAATCTATTTAAAGTACTTTTTATAACT… 

Shifted 
Stop 

Stop 
codon 

Reverse 
strand 



Campylobacter jejuni RM1221  30.3%GC 

All ORFs longer than 100bp on both strands shown 
 - color indicates reading frame 

Longest ORFs likely to be protein-coding genes 
 
Note the low GC content 
 
All genes are ORFs but not all ORFs are genes 



Campylobacter jejuni RM1221  30.3%GC 

Campylobacter jejuni RM1221  30.3%GC 



Mycobacterium smegmatis MC2  67.4%GC 

Note what happens in a high-GC genome 



Mycobacterium smegmatis MC2  67.4%GC 

Mycobacterium smegmatis MC2  67.4%GC 



The Problem 
•  Need to decide which orfs are genes. 

– Then figure out the coding start sites 

•  Can do homology searches but that won’t find 
novel genes 
– Besides, there are errors in the databases 

•  Generally can assume that there are some 
known genes to use as training set. 
– Or just find the obvious ones 



Probabilistic Methods 
•  Create models that have a probability of 

generating any given sequence. 

•  Train the models using examples of the types of 
sequences to generate. 

•  The “score” of an orf is the probability of the 
model generating it. 
– Can also use a negative model (i.e., a model of non-

orfs) and make the score be the ratio of the 
probabilities (i.e., the odds) of the two models. 

– Use logs to avoid underflow 



Fixed-Order Markov Models 
•  k th-order Markov model bases the probability of an event 

on the preceding k events. 
•  Example:  With a 3rd-order model the probability of this 

sequence: 
 
 
 

•  would be: 


Context

(G | CTA) (A | TAG) (T | AGA)P P P⋅ ⋅ 

Context
CTAGAT 

Target 

Target 



Fixed-Order Markov Models 
•  Advantages: 

–  Easy to train.  Count frequencies of (k+1)-mers in 
training data. 

–  Easy to compute probability of sequence. 

•  Disadvantages: 
–  Many (k+1)-mers may be undersampled in training 

data. 
–  Models data as fixed-length chunks. 

…ACGTAGTTCAGTA… 

Target Fixed-Length 
Context 



Interpolated Markov Models (IMM) 
•  Introduced in Glimmer 1.0 

Salzberg, Delcher, Kasif & White, NAR 26, 1998. 

•  Probability of the target position depends on a 
variable number of previous positions 
(sometimes 2 bases, sometimes 3, 4, etc.) 

•  How many is determined by the specific context. 
–  E.g., for context  ggtta  the next position might depend 

on previous 3 bases  tta. 
– But for context  catta  all 5 bases might be 

used. 



IMMs vs Fixed-Order Models 
•  Performance 

–  IMM generally should do at least as well as a fixed-
order model. 

–  Some risk of overtraining. 

•  IMM result can be stored and used like a fixed-
order model. 
–  IMM will be somewhat slower to train and will use 

more memory. 
 

…ACGTAGTTCAGTA… 

Target Variable-Length 
Context 



…ACGTAGTTCAGTA… 

Interpolated Context Model (ICM) 
•  Introduced in Glimmer 2.0 

 Delcher, Harmon, et al., Nucl. Acids Res. 27, 1999. 
•  Doesn’t require adjacent bases in the window 

preceding the target position. 
•  Choose set of positions that are most informative 

about the target position. 

Target Variable-Position 
Context 



ICM 
•  For all windows compare distribution at each context 

position with target position 
 
 
 
 

•  Choose position with max mutual information 
 

( , )
( ; ) ( , ) log

( ) ( )x y

p x y
I X Y p x y

p x p y
=∑∑

************* 

Compare 



ICM 
•  Continue for windows with fixed base at chosen 

positions 
 
 
 
 

•  Recurse until too few training windows 
– Result is a tree—depth is # of context positions used 

•  Then same interpolation as IMM, between node 
and parent in tree 

****A******** 

Compare 



Overlapping Orfs 
•  Glimmer1 & 2 used rules. 

•  For overlapping orfs A and B, the overlap region AB is 
scored separately: 
–  If AB scores higher in A’s reading frame, and A is longer than B, 

then reject B. 
–  If AB scores higher in B’s reading frame, and B is longer than A, 

then reject A. 
–  Otherwise, output both A and B with a “suspicious” tag. 

•  Also try to move start site to eliminate overlaps. 

•  Leads to high false-positive rate, especially in high-GC 
genomes. 



Glimmer3 
•  Uses a dynamic programming algorithm to 

choose the highest-scoring set of orfs and 
start sites. 
– Similar to the longest increasing subsequence 

problem we saw before 

•  Not quite an HMM 
– Allows small overlaps between genes 

•  “small” is user-defined 
– Scores of genes are not necessarily probabilities. 
– Score includes component for likelihood of start 

site 



Reverse Scoring 
•  In Glimmer3 orfs are scored from 3’ end to 

5’ end, i.e., from stop codon back toward start 
codon. 

•  Helps find the start site. 
– The start should appear near the peak of the 

cumulative score in this direction. 
– Keeps the context part of the model entirely in 

the coding portion of gene, which it was trained 
on. 



Reverse Scoring 





Overview of Eukaryotic Gene 
Prediction 

CBB 231 / COMPSCI 261 

W.H. Majoros 



The human genome: 

23 pairs of chromosomes 

2.9 billion A’s, T’s, C’s, G’s 

~22,000 genes (?) 

~1.4% of genome is coding 

Gene 

Exon 

Exon 

Intron 

Exons, Introns, and Genes 



ATG TGA 

coding segment 
complete mRNA 

ATG GT AG GT AG . . . . . . . . . 
start codon stop codon donor site donor site acceptor 

site 
acceptor 

site 

exon exon exon intron intron 

TGA 

Eukaryotic Gene Syntax 

Regions of the gene outside of the CDS are called UTR’s (untranslated regions), and 
are mostly ignored by gene finders, though they are important for regulatory functions. 



Types of Exons 
Three types of exons are defined, for convenience:  

•  initial exons extend from a start codon to the first donor site;  
•  internal exons extend from one acceptor site to the next donor site;  
•  final exons extend from the last acceptor site to the stop codon;  
•  single exons (which occur only in intronless genes) extend from the start codon to 
the stop codon: 



Representing Gene Syntax with ORF Graphs 

After identifying the most promising (i.e., highest-scoring) signals in an input sequence, 
we can apply the gene syntax rules to connect these into an ORF graph: 

An ORF graph represents all possible gene parses (and their scores) for a given set of 
putative signals. A path through the graph represents a single gene parse.  



Conceptual Gene-finding Framework 
TATTCCGATCGATCGATCTCTCTAGCGTCTACG
CTATCATCGCTCTCTATTATCGCGCGATCGTCG
ATCGCGCGAGAGTATGCTACGTCGATCGAATTG 

identify most promising signals, score signals 
and content regions between them; induce an 
ORF graph on the signals 

find highest-scoring path through ORF graph; 
interpret path as a gene parse = gene 
structure 



Hidden Markov Models (HMMs) 
 
 

Steven Salzberg 
JHU 

 



What is an HMM? 
•  Dynamic Bayesian Network 

–  A set of states 
•  {Fair, Biased} for coin tossing 
•  {Gene, Not Gene} for Bacterial Gene 
•  {Intergenic, Exon, Intron} for Eukaryotic Gene 

–  A set of emission characters 
•  E={H,T} for coin tossing 
•  E={1,2,3,4,5,6} for dice tossing 
•  E={A,C,G,T} = for DNA 

 
–  State-specific emission probabilities 

•  P(H | Fair) = .5, P(T | Fair) = .5, P(H | Biased) = .9, P(T | Biased) = .1 
•  P(A | Gene) = .9, P(A | Not Gene) = .1 … 

–  A probability of taking a transition 
•  P(si=Fair|si-1=Fair) = .9, P(si=Bias|si-1 = Fair) .1 
•  P(si=Exon | si-1=Intergenic), … 



Why Hidden? 
•  Observers can see the emitted symbols of an 

HMM but have no ability to know which state 
the HMM is currently in. 
– But we can infer the most likely hidden states of 

an HMM based on the given sequence of emitted 
symbols. 

HTHHTTHHHTHTHTHHTHHHHHHTHTHH!



HMM Example - Casino Coin 

Fair Unfair 

0.9 0.2 

0.8 

0.1 

0.3 0.5 0.5 0.7 

H H T T 

State transition probs. 

Symbol emission probs. 

HTHHTTHHHTHTHTHHTHHHHHHTHTHH!
Observation Sequence 

FFFFFFUUUFFFFFFUUUUUUUFFFFFF! State Sequence 

Motivation: Given a sequence of H & Ts, can you tell at what times the casino cheated? 

Observation Symbols 

States 

Slide credit: Fatih Gelgi, Arizona State U. 



Three classic HMM problems 

1.  Evaluation: given a model and an output 
sequence, what is the probability that the model 
generated that output? 

2.  Decoding: given a model and an output sequence, 
what is the most likely state sequence through the 
model that generated the output? 

3.  Learning: given a model and a set of observed 
sequences, how do we set the model’s 
parameters so that it has a high probability of 
generating those sequences? 

  



Three classic HMM problems 

1.  Evaluation: given a model and an output 
sequence, what is the probability that the model 
generated that output? 
  

•  To answer this, we consider all possible paths 
through the model 

•  Example: we might have a set of HMMs 
representing protein families -> pick the model with 
the best score 



Solving the Evaluation problem:  
The Forward algorithm 

•  To solve the Evaluation problem (probability that the model 
generated the sequence), we use the HMM and the data to 
build a trellis 

•  Filling in the trellis will give tell us the probability that the 
HMM generated the data by finding all possible paths that 
could do it 



Our sample HMM 

Let S1 be initial state, S2 be final state  



A trellis for the Forward Algorithm 

State 

1.0 

0.0 

S1 

S2 

Time 
t=0 t=2 t=3 t=1 

Output: A C C 

(0.6)(0.8)(1.0) 

(0.9)(0.3)(0) 

+ 

+ 

0.48 

0.20 



A trellis for the Forward Algorithm 

State 

1.0 

0.0 

S1 

S2 

Time 
t=0 t=2 t=3 t=1 

Output: A C C 

(0.6)(0.8)(1.0) 

(0.9)(0.3)(0) 

+ 

+ 

0.48 

0.20 

(0.6)(0.2)(0.48) 

(0.9)(0.7)(0.2) 

+ 

+ 

.0756 

.222 

.0576 + .018 = .0756 

.126 + .096 = .222 



A trellis for the Forward Algorithm 

State 

1.0 

0.0 

S1 

S2 

Time 
t=0 t=2 t=3 t=1 

Output: A C C 

(0.6)(0.8)(1.0) 

(0.9)(0.3)(0) 

+ 

+ 

0.48 

0.20 

(0.6)(0.2)(0.48) 

(0.9)(0.7)(0.2) 

+ 

+ 

.0756 

.222 

(0.6)(0.2)(.0756) 

(0.9)(0.7)(0.222) 

+ 

+ 

.029 

.155 

.009072 + .01998 = .029052 

.13986 + .01512 = .15498 



Probability of the model 
•  The Forward algorithm computes P(y|M) 

•  If we are comparing two or more models, we want the 
likelihood that each model generated the data: P(M|y) 

–  Use Bayes’ law: 

 
–  Since P(y) is constant for a given input, we just need to 

maximize P(y|M)P(M) 
€ 

P(M | y) =
P(y |M)P(M)

P(y)



Three classic HMM problems 

2.  Decoding: given a model and an output sequence, 
what is the most likely state sequence through the 
model that generated the output? 

 
•  A solution to this problem gives us a way to match 

up an observed sequence and the states in the 
model. 

 
        AAAGCATGCATTTAACGAGAGCACAAGGGCTCTAATGCCG 

  
 The sequence of states is an annotation of the generated string – each 

 nucleotide is generated in intergenic, start/stop, coding state 



Three classic HMM problems 

2.  Decoding: given a model and an output sequence, 
what is the most likely state sequence through the 
model that generated the output? 

 
•  A solution to this problem gives us a way to match 

up an observed sequence and the states in the 
model. 

 
 AAAGC ATG CAT TTA ACG AGA GCA CAA GGG CTC TAA TGCCG 
  
 The sequence of states is an annotation of the generated string – each 

 nucleotide is generated in intergenic, start/stop, coding state 



Solving the Decoding Problem:  
The Viterbi algorithm 

•  To solve the decoding problem (find the most likely 
sequence of states), we evaluate the Viterbi algorithm 

Where Vi(t) is the probability that the HMM is in state i 
after generating the sequence y1,y2,…,yt, following the 
most probable path in the HMM 

€ 

Vi t( ) =

0 : t = 0∧ i ≠ SI
1 : t = 0∧ i = SI

maxV j (t −1)a jib ji(y) : t > 0

% 

& 
' 

( 
' 



A trellis for the Viterbi Algorithm 

State 

1.0 

0.0 

S1 

S2 

Time 
t=0 t=2 t=3 t=1 

Output: A C C 

(0.6)(0.8)(1.0) 

(0.9)(0.3)(0) 

max 
0.48 

0.20 
max 



A trellis for the Viterbi Algorithm 

State 

1.0 

0.0 

S1 

S2 

Time 
t=0 t=2 t=3 t=1 

Output: A C C 

(0.6)(0.8)(1.0) 

(0.9)(0.3)(0) 

max 

max 

0.48 

0.20 

(0.6)(0.2)(0.48) 

(0.9)(0.7)(0.2) 

.0576 

.126 

max(.0576,.018) = .0576 

max(.126,.096) = .126 
max 

max 



A trellis for the Viterbi Algorithm 

State 

1.0 

0.0 

S1 

S2 

Time 
t=0 t=2 t=3 t=1 

Output: A C C 

(0.6)(0.8)(1.0) 

(0.9)(0.3)(0) 

max 

max 

0.48 

0.20 

(0.6)(0.2)(0.48) 

(0.9)(0.7)(0.2) 

.01134 

.07938 
max 

max max 

max 

(0.6)(0.2)(0.0576) 

(0.9)(0.7)(0.126) 

.0576 

.126 max(.01152,.07938) = .07938 

max(.006912,.01134) = .01134 



A trellis for the Viterbi Algorithm 

State 

1.0 

0.0 

S1 

S2 

Time 
t=0 t=2 t=3 t=1 

Output: A C C 

(0.6)(0.8)(1.0) 

(0.9)(0.3)(0) 

max 

max 

0.48 

0.20 

(0.6)(0.2)(0.48) 

(0.9)(0.7)(0.2) 

.01134 

.07938 
max 

max max 

max 

(0.6)(0.2)(0.0576) 

(0.9)(0.7)(0.126) 

.0576 

.126 

Parse: S1 S2 S2 



Three classic HMM problems 

3.  Learning: given a model and a set of observed 
sequences, how do we set the model’s 
parameters so that it has a high probability of 
generating those sequences? 

•  This is perhaps the most important, and most 
difficult problem. 

•  A solution to this problem allows us to determine 
all the probabilities in an HMMs by using an 
ensemble of training data 



Learning in HMMs:  
The E-M algorithm 

•  The learning algorithm is called “Expectation-
Maximization” or E-M 
– Also called the Forward-Backward algorithm 
– Also called the Baum-Welch algorithm 

•  In order to learn the parameters in an 
“empty” HMM, we need: 
– The topology of the HMM 
– Data - the more the better 

    è See Supplemental Slides 



 Eukaryotic Gene Finding with 
GlimmerHMM 

Mihaela Pertea 
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JHU 



HMMs and Gene Structure 

•  Nucleotides {A,C,G,T} are the observables 
 
•  Different states generate nucleotides at different frequencies 
 

 A simple HMM for unspliced genes: 

 

 
 
 

 AAAGC ATG CAT TTA ACG AGA GCA CAA GGG CTC TAA TGCCG 

•  The sequence of states is an annotation of the generated string – each nucleotide is 
generated in intergenic, start/stop, coding state 

    A T G             T A A 



exon length 
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=
− ∏ θθ

geometric distribution 

HMMs & Geometric Feature Lengths 



•  GHMMs generalize HMMs by allowing each state to emit a subsequence rather 
than just a single symbol 

•  Whereas HMMs model all feature lengths using a geometric distribution, coding 
features can be modeled using an arbitrary length distribution in a GHMM 

•  Emission models within a GHMM can be any arbitrary probabilistic model 
(“submodel abstraction”), such as a neural network or decision tree 

•  GHMMs tend to have many fewer states => simplicity & modularity 

Generalized HMMs Summary 



     GlimmerHMM architecture 

I2 I1 I0 

Exon2 Exon1 Exon0 

Exon Sngl 
Init Exon 

I1 I2 

Exon1 Exon2 

Term Exon 

Term Exon 

I0 

Exon0 

Exon Sngl 
Init Exon 

+ forward strand 
- backward strand 

Phase-specific introns 

Four exon types 

•  Uses GHMM to model 
gene structure (explicit 
length modeling) 
•  WAM and MDD for splice 
sites 
•  ICMs for exons, introns 
and intergenic regions 
•  Different model parameters 
for regions with different GC 
content 
•  Can emit a graph of high-
scoring ORFS 

Intergenic 



A three-periodic ICM uses three ICMs in succession to evaluate the different codon 
positions, which have different statistics: 

ATC  GAT  CGA  TCA  GCT  TAT  CGC  ATC 

ICM0 ICM1 ICM2 

P[C|M0] P[G|M1] P[A|M2] 

The three ICMs correspond to the three phases.  Every base is evaluated in every 
phase, and the score for a given stretch of (putative) coding DNA is obtained by 
multiplying the phase-specific probabilities in a mod 3 fashion: 

∏
−

=
+

1

0
)3)(mod( )(

L

i
iif xP

GlimmerHMM uses 3-periodic ICMs for coding and homogeneous (non-periodic) 
ICMs for noncoding DNA. 

Coding vs Non-coding 



Signal Sensors 
Signals – short sequence patterns in the genomic DNA that are recognized by 
the cellular machinery. 



…ACTGATGCGCGATTAGAGTCATGGCGATGCATCTAGCTAGCTATATCGCGTAGCTAGCTAGCTGATCTACTATCGTAGC… 

Signal sensor 

We slide a fixed-length model or “window” along the DNA and evaluate 
score(signal) at each point: 

When the score is greater than some threshold (determined empirically to result in 
a desired sensitivity), we remember this position as being the potential site of a 
signal. 
 
The most common signal sensor is the Weight Matrix: 

A  
100% 

A = 31% 
T = 28% 
C = 21% 
G = 20% 

T  
100% 

G  
100% 

A = 18% 
T = 32% 
C = 24% 
G = 26% 

A = 19% 
T = 20% 
C = 29% 
G = 32% 

A = 24% 
T = 18% 
C = 26% 
G = 32% 

Identifying Signals In DNA 



Splice site prediction 

The splice site score is a combination of: 
•  first or second order inhomogeneous Markov models on windows around 

the acceptor and donor sites 
•  Maximal dependence decomposition (MDD) decision trees 
•  longer Markov models to capture difference between coding and non-

coding on opposite sides of site (optional) 
•  maximal splice site score within 60 bp (optional) 

16bp 24bp 



     GlimmerHMM architecture 

I2 I1 I0 

Exon2 Exon1 Exon0 

Exon Sngl 
Init Exon 

I1 I2 

Exon1 Exon2 

Term Exon 

Term Exon 

I0 

Exon0 

Exon Sngl 
Init Exon 

+ forward strand 
- backward strand 

Phase-specific introns 

Four exon types 

•  Uses GHMM to model 
gene structure (explicit 
length modeling) 
•  WAM and MDD for splice 
sites 
•  ICMs for exons, introns 
and intergenic regions 
•  Different model parameters 
for regions with different GC 
content 
•  Can emit a graph of high-
scoring ORFS 

Intergenic 



Given a sequence S, we would like to determine the parse φ of that sequence 
which segments the DNA into the most likely exon/intron structure: 

The parse φ consists of the coordinates of the predicted exons, and corresponds 
to the precise sequence of states during the operation of the GHMM (and their 
duration, which equals the number of symbols each state emits). 
 
This is the same as in an HMM except that in the HMM each state emits bases 
with fixed probability, whereas in the GHMM each state emits an entire feature 
such as an exon or intron. 

parse φ 

initial interior final 

AGCTAGCAGTCGATCATGGCATTATCGGCCGTAGTACGTAGCAGTAGCTAGTAGCAGTCGATAGTAGCATTATCGGCCGTAGCTACGTAGCGTAGCTC 

sequence S 

prediction 

Gene Prediction with a GHMM 



Evaluation of Gene Finding Programs 

Nucleotide level accuracy 

FNTP
TPSn
+

=

TN FP FN TN TN TP FN TP FN 

REALITY 

PREDICTION 

Sensitivity: 

Specificity: 
FPTP

TPSp
+

=



More Measures of Prediction Accuracy 

Exon level accuracy 

exons actual ofnumber 
exonscorrect  ofnumber 

==
AE
TEExonSn

REALITY 

PREDICTION 

WRONG 
EXON 

CORRECT 
EXON 

MISSING 
EXON 

exons predicted ofnumber 
exonscorrect  ofnumber 

==
PE
TEExonSp



GlimmerHMM is a high-performance ab 
initio gene finder 

• All three programs were tested on a test data set of 809 genes, which did not 
overlap with the training data set of GlimmerHMM.  
• All genes were confirmed by full-length Arabidopsis cDNAs and carefully 
inspected to remove homologues. 

Arabidopsis thaliana test results 

Nucleotide Exon Gene 
Sn Sp Acc Sn Sp Acc Sn Sp Acc 

GlimmerHMM 97 99 98 84 89 86.5 60 61 60.5 

SNAP 96 99 97.5 83 85 84 60 57 58.5 

Genscan+ 93 99 96 74 81 77.5 35 35 35 



 
  

Nuc 
Sens 

Nuc 
Spec 

Nuc 
Acc 

Exon 
Sens 

Exon 
Spec 

Exon 
Acc 

Exact 
Genes 

GlimmerHMM 86% 72% 79% 72% 62% 67% 17% 

Genscan 86% 68% 77% 69% 60% 65% 13% 

GlimmerHMM’s performace compared to Genscan on 963 human RefSeq 
genes selected randomly from all 24 chromosomes, non-overlapping with the 
training set. The test set contains 1000 bp of untranslated sequence on either 
side (5' or 3') of the coding portion of each gene.  

GlimmerHMM on human data 



Summary 
•  Prokaryotic gene finding distinguishes between genes 

and random ORFs 
–  Prokaryotic genes have simple structure and are largely 

homogenous, making it relatively easy to recognize their 
sequence composition  

•  Eukaryotic gene finding identifies the genome-wide 
most probable gene models (set of exons) 
–  GHMM to enforce overall gene structure, separate models to 

score splicing/transcription signals 
–  Accuracy depends to a large extent on the quality of the 

training data 
•  All future genome projects will be accompanied by mRNAseq 



Break 



Review 



Exact Matching 
•  Explain the Brute Force search algorithm (algorithm sketch, 

running time, space requirement) 

1.  Suffix Arrays 
 
2.  Hash Tables 
 
3.  How many times do we expected GATTACA to be in the 

human genome (3Gbp), barley (6GB) or pine (24GB)? 



Sequence Alignment 
1.  What is a good scoring scheme for aligning: 

English words? Illumina Reads? Gene Sequences? Genomes? 

2.  Explain Dynamic Programming for computing edit 
distance 

3.  BLAST 
 
4.  Bowtie 



Graphs and Assembly 
1.  How do I compute the shortest path 

between 2 nodes and how long does it take? 

2.  Mark connected components in a graph? 
 
3.  Shortest path visiting all nodes? 

4.  Describe Genome Assembly 

5.  How do we detect mis-assemblies? 



Gene Finding 
1.  Describe Prokaryotic Gene Finding 

2.  Describe Eukaryotic gene finding 

3.  What is an Markov Chain? 
–  IMM? ICM? HMM? GHMM? 

4.  What do the Forward and Viterbi Algorithms Compute 
 



CS Fundamentals 
1.  Order these running times 

O(lg n), O(2n), O(n100), O(n2), O(n!) O(nlgn), O(n(lgn)(lgn)), O(1), O(1.5n) 

2.  Describe Selection Sort 
3.  QuickSort 
4.  Bucket Sort 

5.  Describe Recursion 
6.  Dynamic Programming 
7.  Branch-and-Bound 
8.  Greedy Algorithm 

9.  Describe an NP-complete problem 



Supplemental 
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Learning in HMMs:  
The E-M algorithm 

•  In order to learn the parameters in an 
“empty” HMM, we need: 
– The topology of the HMM 
– Data - the more the better 

•  The learning algorithm is called “Estimate-
Maximize” or E-M 
– Also called the Forward-Backward algorithm 
– Also called the Baum-Welch algorithm 
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An untrained HMM 
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Some HMM training data 
•  CACAACAAAACCCCCCACAA 
•  ACAACACACACACACACCAAAC 
•  CAACACACAAACCCC 
•  CAACCACCACACACACACCCCA 
•  CCCAAAACCCCAAAAACCC 
•  ACACAAAAAACCCAACACACAACA 
•  ACACAACCCCAAAACCACCAAAAA 
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Step 1: Guess all the probabilities 

•  We can start with random probabilities, the 
learning algorithm will adjust them 

•  If we can make good guesses, the results will 
generally be better 
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Step 2: the Forward algorithm 

•  Reminder: each box in the trellis contains a 
value αi(t) 

αi(t) is the probability that our HMM has 
generated the sequence y1, y2, …, yt and has 
ended up in state i. 
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Reminder: notations 
•  sequence of length T: 

•  all sequences of length T: 

•  Path of length T+1 generates Y: 

•  All paths:  € 

y1
T

€ 

Y1
T

€ 

x1
T +1

€ 

X1
T +1
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Step 3: the Backward algorithm 
•  Next we need to compute βi(t) using a 

Backward computation 

βi(t) is the probability that our HMM will 
generate the rest of the sequence yt+1,yt+2, …, 
yT beginning in state i 
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A trellis for the Backward Algorithm 

State 

0.0 

1.0 

S1 

S2 

Time 
t=0 t=2 t=3 t=1 

Output: A C C 
(0.9)(0.7)(1.0) 

+ 

+ 

(0.6)(0.2)(0.0) 0.2 

0.63 
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A trellis for the Backward Algorithm (2) 

State 

0.2 .15 0.0 

0.63 .415 1.0 

S1 

S2 

Time 
t=0 t=2 t=3 t=1 

Output: A C C 
(0.9)(0.7)(1.0) 

+ 

+ 

(0.6)(0.2)(0.0) 

(0.9)(0.7)(0.63) 

+ 

+ 

(0.6)(0.2)(0.2) .024 + .126 = .15 

.397 + .018 = .415 
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A trellis for the Backward Algorithm (3) 

State 

0.2 .15 0.0 

0.63 .415 1.0 

S1 

S2 

Time 
t=0 t=2 t=3 t=1 

Output: A C C 
(0.9)(0.7)(1.0) 

+ 

+ 

(0.6)(0.2)(0.0) 

(0.9)(0.7)(0.63) 

+ 

+ 

(0.6)(0.2)(0.2) (0.6)(0.8)(0.15) 

(0.9)(0.3)(0.415) 

.155 

.114 

.072 + .083 = .155 

.112 + .0015 = .1135 
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Step 4: Re-estimate the 
probabilities 

•  After running the Forward and Backward 
algorithms once, we can re-estimate all the 
probabilities in the HMM 

•  αSF is the prob. that the HMM generated the 
entire sequence 

•  Nice property of E-M: the value of αSF never 
decreases; it converges to a local maximum 

•  We can read off α and β values from Forward 
and Backward trellises 
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Compute new transition 
probabilities 

•  γ is the probability of making transition i-j at 
time t, given the observed output 
– γ is dependent on data, plus it only applies for 

one time step; otherwise it is just like aij(t) 

€ 

γ ij t( ) = P(Xt = i,Xt+1 = j | y1
T )

€ 

γ ij t( ) =
α i(t −1)aijbij (yt )β j (t)

αSF
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What is gamma? 

•  Sum γ over all time steps, then we get the 
expected number of times that the transition 
i-j was made while generating the sequence 
Y: 

€ 

C1 = γ ij (t)
t=1

T

∑
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How many times did we leave i? 

•  Sum γ over all time steps and all states that can follow i, 
then we get the expected number of times that the 
transition i-x as made for any state x: 

€ 

C2 = γ ik (t)
k
∑

t=1

T

∑
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Recompute transition probability 

€ 

aij =
C1
C2

In other words, probability of going from state i to j is estimated by 
counting how often we took it for our data (C1), and dividing that by 
how often we went from i to other states (C2) 
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Recompute output probabilities 
•  Originally these were bij(k) values 
•  We need: 

– expected number of times that we made the 
transition i-j and emitted the symbol k 

– The expected number of times that we made the 
transition i-j 
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New estimate of bij(k) 

€ 

bij (k) =

γ ij (t)
t:yt = k
∑

γ ij (t)
t=1

T

∑
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Step 5: Go to step 2 
•  Step 2 is Forward Algorithm 
•  Repeat entire process until the probabilities converge 

–  Usually this is rapid, 10-15 iterations 

•  “Estimate-Maximize” because the algorithm first 
estimates probabilities, then maximizes them based on 
the data 

•  “Forward-Backward” refers to the two computationally 
intensive steps in the algorithm 


