
Gene Finding & HMMs
Michael Schatz

Bioinformatics Lecture 4
Quantitative Biology 2012

Outline
1.  'Semantic' Sequence Analysis

1.  Prokaryotic Gene Finding
2.  Eukaryotic Gene Finding

2.  Review
1.  Indexing & Exact Match
2.  Sequence Alignment & Dynamic Programming
3.  Graphs & Genome Assembly
4.  Gene Finding & HMMs

Gene Prediction: Computational Challenge

aatgcatgcggctatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaa
tgcatgcggctatgcaagctgggatccgatgactatgctaagctgggatccgatgacaatgcatgcggctatgc
taatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatga
atggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgc
ggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatg
cggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatc
ctgcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcgg
ctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggaatgcatg
cggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatc
cgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcatgcggctatgctaagctggg
aatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaag
ctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcggctatgctaatga
atggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtc
ttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgg
gatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagc
tgcggctatgctaatgcatgcggctatgctaagctcatgcgg

Gene Prediction: Computational Challenge

aatgcatgcggctatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaa
tgcatgcggctatgcaagctgggatccgatgactatgctaagctgggatccgatgacaatgcatgcggctatgc
taatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatga
atggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgc
ggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatg
cggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatc
ctgcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcgg
ctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggaatgcatg
cggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatc
cgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcatgcggctatgctaagctggg
aatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaag
ctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcggctatgctaatga
atggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtc
ttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgg
gatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagc
tgcggctatgctaatgcatgcggctatgctaagctcatgcgg

 Gene!

Genes to Proteins

Bacterial Gene Finding and Glimmer
(also Archaeal and viral gene finding)

Arthur L. Delcher and Steven Salzberg
Center for Bioinformatics and Computational Biology

Johns Hopkins University School of Medicine

Outline
•  A (very) brief overview of microbial gene-finding

•  Glimmer1 & 2
–  Interpolated Markov Model (IMM)
–  Interpolated Context Model (ICM)

•  Glimmer3
– Reducing false positives
–  Improving coding initiation site predictions
– Running Glimmer3

Step One

•  Find open reading frames (ORFs).

…TAGATGAATGGCTCTTTAGATAAATTTCATGAAAAATATTGA…

Stop
codon

Stop
codon

Start
codon

Step One

•  Find open reading frames (ORFs).

•  But ORFs generally overlap …

…TAGATGAATGGCTCTTTAGATAAATTTCATGAAAAATATTGA…

Stop
codon

Stop
codon

…ATCTACTTACCGAGAAATCTATTTAAAGTACTTTTTATAACT…

Shifted
Stop

Stop
codon

Reverse
strand

Campylobacter jejuni RM1221 30.3%GC

All ORFs longer than 100bp on both strands shown
 - color indicates reading frame

Longest ORFs likely to be protein-coding genes

Note the low GC content

All genes are ORFs but not all ORFs are genes

Campylobacter jejuni RM1221 30.3%GC

Campylobacter jejuni RM1221 30.3%GC

Mycobacterium smegmatis MC2 67.4%GC

Note what happens in a high-GC genome

Mycobacterium smegmatis MC2 67.4%GC

Mycobacterium smegmatis MC2 67.4%GC

The Problem
•  Need to decide which orfs are genes.

– Then figure out the coding start sites

•  Can do homology searches but that won’t find
novel genes
– Besides, there are errors in the databases

•  Generally can assume that there are some
known genes to use as training set.
– Or just find the obvious ones

Probabilistic Methods
•  Create models that have a probability of

generating any given sequence.

•  Train the models using examples of the types of
sequences to generate.

•  The “score” of an orf is the probability of the
model generating it.
– Can also use a negative model (i.e., a model of non-

orfs) and make the score be the ratio of the
probabilities (i.e., the odds) of the two models.

– Use logs to avoid underflow

Fixed-Order Markov Models
•  k th-order Markov model bases the probability of an event

on the preceding k events.
•  Example: With a 3rd-order model the probability of this

sequence:

•  would be:


Context

(G | CTA) (A | TAG) (T | AGA)P P P⋅ ⋅ 

Context
CTAGAT 

Target

Target

Fixed-Order Markov Models
•  Advantages:

–  Easy to train. Count frequencies of (k+1)-mers in
training data.

–  Easy to compute probability of sequence.

•  Disadvantages:
–  Many (k+1)-mers may be undersampled in training

data.
–  Models data as fixed-length chunks.

…ACGTAGTTCAGTA…

Target Fixed-Length
Context

Interpolated Markov Models (IMM)
•  Introduced in Glimmer 1.0

Salzberg, Delcher, Kasif & White, NAR 26, 1998.

•  Probability of the target position depends on a
variable number of previous positions
(sometimes 2 bases, sometimes 3, 4, etc.)

•  How many is determined by the specific context.
–  E.g., for context ggtta the next position might depend

on previous 3 bases tta.
– But for context catta all 5 bases might be

used.

IMMs vs Fixed-Order Models
•  Performance

–  IMM generally should do at least as well as a fixed-
order model.

–  Some risk of overtraining.

•  IMM result can be stored and used like a fixed-
order model.
–  IMM will be somewhat slower to train and will use

more memory.

…ACGTAGTTCAGTA…

Target Variable-Length
Context

…ACGTAGTTCAGTA…

Interpolated Context Model (ICM)
•  Introduced in Glimmer 2.0

 Delcher, Harmon, et al., Nucl. Acids Res. 27, 1999.
•  Doesn’t require adjacent bases in the window

preceding the target position.
•  Choose set of positions that are most informative

about the target position.

Target Variable-Position
Context

ICM
•  For all windows compare distribution at each context

position with target position

•  Choose position with max mutual information

(,)
(;) (,) log

() ()x y

p x y
I X Y p x y

p x p y
=∑∑

Compare

ICM
•  Continue for windows with fixed base at chosen

positions

•  Recurse until too few training windows
– Result is a tree—depth is # of context positions used

•  Then same interpolation as IMM, between node
and parent in tree

****A********

Compare

Overlapping Orfs
•  Glimmer1 & 2 used rules.

•  For overlapping orfs A and B, the overlap region AB is
scored separately:
–  If AB scores higher in A’s reading frame, and A is longer than B,

then reject B.
–  If AB scores higher in B’s reading frame, and B is longer than A,

then reject A.
–  Otherwise, output both A and B with a “suspicious” tag.

•  Also try to move start site to eliminate overlaps.

•  Leads to high false-positive rate, especially in high-GC
genomes.

Glimmer3
•  Uses a dynamic programming algorithm to

choose the highest-scoring set of orfs and
start sites.
– Similar to the longest increasing subsequence

problem we saw before

•  Not quite an HMM
– Allows small overlaps between genes

•  “small” is user-defined
– Scores of genes are not necessarily probabilities.
– Score includes component for likelihood of start

site

Reverse Scoring
•  In Glimmer3 orfs are scored from 3’ end to

5’ end, i.e., from stop codon back toward start
codon.

•  Helps find the start site.
– The start should appear near the peak of the

cumulative score in this direction.
– Keeps the context part of the model entirely in

the coding portion of gene, which it was trained
on.

Reverse Scoring

Overview of Eukaryotic Gene
Prediction

CBB 231 / COMPSCI 261

W.H. Majoros

The human genome:

23 pairs of chromosomes

2.9 billion A’s, T’s, C’s, G’s

~22,000 genes (?)

~1.4% of genome is coding

Gene

Exon

Exon

Intron

Exons, Introns, and Genes

ATG TGA

coding segment
complete mRNA

ATG GT AG GT AG
start codon stop codon donor site donor site acceptor

site
acceptor

site

exon exon exon intron intron

TGA

Eukaryotic Gene Syntax

Regions of the gene outside of the CDS are called UTR’s (untranslated regions), and
are mostly ignored by gene finders, though they are important for regulatory functions.

Types of Exons
Three types of exons are defined, for convenience:

•  initial exons extend from a start codon to the first donor site;
•  internal exons extend from one acceptor site to the next donor site;
•  final exons extend from the last acceptor site to the stop codon;
•  single exons (which occur only in intronless genes) extend from the start codon to
the stop codon:

Representing Gene Syntax with ORF Graphs

After identifying the most promising (i.e., highest-scoring) signals in an input sequence,
we can apply the gene syntax rules to connect these into an ORF graph:

An ORF graph represents all possible gene parses (and their scores) for a given set of
putative signals. A path through the graph represents a single gene parse.

Conceptual Gene-finding Framework
TATTCCGATCGATCGATCTCTCTAGCGTCTACG
CTATCATCGCTCTCTATTATCGCGCGATCGTCG
ATCGCGCGAGAGTATGCTACGTCGATCGAATTG

identify most promising signals, score signals
and content regions between them; induce an
ORF graph on the signals

find highest-scoring path through ORF graph;
interpret path as a gene parse = gene
structure

Hidden Markov Models (HMMs)

Steven Salzberg
JHU

What is an HMM?
•  Dynamic Bayesian Network

–  A set of states
•  {Fair, Biased} for coin tossing
•  {Gene, Not Gene} for Bacterial Gene
•  {Intergenic, Exon, Intron} for Eukaryotic Gene

–  A set of emission characters
•  E={H,T} for coin tossing
•  E={1,2,3,4,5,6} for dice tossing
•  E={A,C,G,T} = for DNA

–  State-specific emission probabilities

•  P(H | Fair) = .5, P(T | Fair) = .5, P(H | Biased) = .9, P(T | Biased) = .1
•  P(A | Gene) = .9, P(A | Not Gene) = .1 …

–  A probability of taking a transition
•  P(si=Fair|si-1=Fair) = .9, P(si=Bias|si-1 = Fair) .1
•  P(si=Exon | si-1=Intergenic), …

Why Hidden?
•  Observers can see the emitted symbols of an

HMM but have no ability to know which state
the HMM is currently in.
– But we can infer the most likely hidden states of

an HMM based on the given sequence of emitted
symbols.

HTHHTTHHHTHTHTHHTHHHHHHTHTHH!

HMM Example - Casino Coin

Fair Unfair

0.9 0.2

0.8

0.1

0.3 0.5 0.5 0.7

H H T T

State transition probs.

Symbol emission probs.

HTHHTTHHHTHTHTHHTHHHHHHTHTHH!
Observation Sequence

FFFFFFUUUFFFFFFUUUUUUUFFFFFF! State Sequence

Motivation: Given a sequence of H & Ts, can you tell at what times the casino cheated?

Observation Symbols

States

Slide credit: Fatih Gelgi, Arizona State U.

Three classic HMM problems

1.  Evaluation: given a model and an output
sequence, what is the probability that the model
generated that output?

2.  Decoding: given a model and an output sequence,
what is the most likely state sequence through the
model that generated the output?

3.  Learning: given a model and a set of observed
sequences, how do we set the model’s
parameters so that it has a high probability of
generating those sequences?

Three classic HMM problems

1.  Evaluation: given a model and an output
sequence, what is the probability that the model
generated that output?

•  To answer this, we consider all possible paths
through the model

•  Example: we might have a set of HMMs
representing protein families -> pick the model with
the best score

Solving the Evaluation problem:
The Forward algorithm

•  To solve the Evaluation problem (probability that the model
generated the sequence), we use the HMM and the data to
build a trellis

•  Filling in the trellis will give tell us the probability that the
HMM generated the data by finding all possible paths that
could do it

Our sample HMM

Let S1 be initial state, S2 be final state

A trellis for the Forward Algorithm

State

1.0

0.0

S1

S2

Time
t=0 t=2 t=3 t=1

Output: A C C

(0.6)(0.8)(1.0)

(0.9)(0.3)(0)

+

+

0.48

0.20

A trellis for the Forward Algorithm

State

1.0

0.0

S1

S2

Time
t=0 t=2 t=3 t=1

Output: A C C

(0.6)(0.8)(1.0)

(0.9)(0.3)(0)

+

+

0.48

0.20

(0.6)(0.2)(0.48)

(0.9)(0.7)(0.2)

+

+

.0756

.222

.0576 + .018 = .0756

.126 + .096 = .222

A trellis for the Forward Algorithm

State

1.0

0.0

S1

S2

Time
t=0 t=2 t=3 t=1

Output: A C C

(0.6)(0.8)(1.0)

(0.9)(0.3)(0)

+

+

0.48

0.20

(0.6)(0.2)(0.48)

(0.9)(0.7)(0.2)

+

+

.0756

.222

(0.6)(0.2)(.0756)

(0.9)(0.7)(0.222)

+

+

.029

.155

.009072 + .01998 = .029052

.13986 + .01512 = .15498

Probability of the model
•  The Forward algorithm computes P(y|M)

•  If we are comparing two or more models, we want the
likelihood that each model generated the data: P(M|y)

–  Use Bayes’ law:

–  Since P(y) is constant for a given input, we just need to

maximize P(y|M)P(M)
€

P(M | y) =
P(y |M)P(M)

P(y)

Three classic HMM problems

2.  Decoding: given a model and an output sequence,
what is the most likely state sequence through the
model that generated the output?

•  A solution to this problem gives us a way to match

up an observed sequence and the states in the
model.

 AAAGCATGCATTTAACGAGAGCACAAGGGCTCTAATGCCG

 The sequence of states is an annotation of the generated string – each

 nucleotide is generated in intergenic, start/stop, coding state

Three classic HMM problems

2.  Decoding: given a model and an output sequence,
what is the most likely state sequence through the
model that generated the output?

•  A solution to this problem gives us a way to match

up an observed sequence and the states in the
model.

 AAAGC ATG CAT TTA ACG AGA GCA CAA GGG CTC TAA TGCCG

 The sequence of states is an annotation of the generated string – each

 nucleotide is generated in intergenic, start/stop, coding state

Solving the Decoding Problem:
The Viterbi algorithm

•  To solve the decoding problem (find the most likely
sequence of states), we evaluate the Viterbi algorithm

Where Vi(t) is the probability that the HMM is in state i
after generating the sequence y1,y2,…,yt, following the
most probable path in the HMM

€

Vi t() =

0 : t = 0∧ i ≠ SI
1 : t = 0∧ i = SI

maxV j (t −1)a jib ji(y) : t > 0

%

&
'

(
'

A trellis for the Viterbi Algorithm

State

1.0

0.0

S1

S2

Time
t=0 t=2 t=3 t=1

Output: A C C

(0.6)(0.8)(1.0)

(0.9)(0.3)(0)

max
0.48

0.20
max

A trellis for the Viterbi Algorithm

State

1.0

0.0

S1

S2

Time
t=0 t=2 t=3 t=1

Output: A C C

(0.6)(0.8)(1.0)

(0.9)(0.3)(0)

max

max

0.48

0.20

(0.6)(0.2)(0.48)

(0.9)(0.7)(0.2)

.0576

.126

max(.0576,.018) = .0576

max(.126,.096) = .126
max

max

A trellis for the Viterbi Algorithm

State

1.0

0.0

S1

S2

Time
t=0 t=2 t=3 t=1

Output: A C C

(0.6)(0.8)(1.0)

(0.9)(0.3)(0)

max

max

0.48

0.20

(0.6)(0.2)(0.48)

(0.9)(0.7)(0.2)

.01134

.07938
max

max max

max

(0.6)(0.2)(0.0576)

(0.9)(0.7)(0.126)

.0576

.126 max(.01152,.07938) = .07938

max(.006912,.01134) = .01134

A trellis for the Viterbi Algorithm

State

1.0

0.0

S1

S2

Time
t=0 t=2 t=3 t=1

Output: A C C

(0.6)(0.8)(1.0)

(0.9)(0.3)(0)

max

max

0.48

0.20

(0.6)(0.2)(0.48)

(0.9)(0.7)(0.2)

.01134

.07938
max

max max

max

(0.6)(0.2)(0.0576)

(0.9)(0.7)(0.126)

.0576

.126

Parse: S1 S2 S2

Three classic HMM problems

3.  Learning: given a model and a set of observed
sequences, how do we set the model’s
parameters so that it has a high probability of
generating those sequences?

•  This is perhaps the most important, and most
difficult problem.

•  A solution to this problem allows us to determine
all the probabilities in an HMMs by using an
ensemble of training data

Learning in HMMs:
The E-M algorithm

•  The learning algorithm is called “Expectation-
Maximization” or E-M
– Also called the Forward-Backward algorithm
– Also called the Baum-Welch algorithm

•  In order to learn the parameters in an
“empty” HMM, we need:
– The topology of the HMM
– Data - the more the better

 è See Supplemental Slides

 Eukaryotic Gene Finding with
GlimmerHMM

Mihaela Pertea
Assistant Professor

JHU

HMMs and Gene Structure

•  Nucleotides {A,C,G,T} are the observables

•  Different states generate nucleotides at different frequencies

 A simple HMM for unspliced genes:

 AAAGC ATG CAT TTA ACG AGA GCA CAA GGG CTC TAA TGCCG

•  The sequence of states is an annotation of the generated string – each nucleotide is
generated in intergenic, start/stop, coding state

 A T G T A A

exon length

)1()|()|...(1
1

0
10 ppxPxxP d

d

i
ied −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −

−

=
− ∏ θθ

geometric distribution

HMMs & Geometric Feature Lengths

•  GHMMs generalize HMMs by allowing each state to emit a subsequence rather
than just a single symbol

•  Whereas HMMs model all feature lengths using a geometric distribution, coding
features can be modeled using an arbitrary length distribution in a GHMM

•  Emission models within a GHMM can be any arbitrary probabilistic model
(“submodel abstraction”), such as a neural network or decision tree

•  GHMMs tend to have many fewer states => simplicity & modularity

Generalized HMMs Summary

 GlimmerHMM architecture

I2 I1 I0

Exon2 Exon1 Exon0

Exon Sngl
Init Exon

I1 I2

Exon1 Exon2

Term Exon

Term Exon

I0

Exon0

Exon Sngl
Init Exon

+ forward strand
- backward strand

Phase-specific introns

Four exon types

•  Uses GHMM to model
gene structure (explicit
length modeling)
•  WAM and MDD for splice
sites
•  ICMs for exons, introns
and intergenic regions
•  Different model parameters
for regions with different GC
content
•  Can emit a graph of high-
scoring ORFS

Intergenic

A three-periodic ICM uses three ICMs in succession to evaluate the different codon
positions, which have different statistics:

ATC GAT CGA TCA GCT TAT CGC ATC

ICM0 ICM1 ICM2

P[C|M0] P[G|M1] P[A|M2]

The three ICMs correspond to the three phases. Every base is evaluated in every
phase, and the score for a given stretch of (putative) coding DNA is obtained by
multiplying the phase-specific probabilities in a mod 3 fashion:

∏
−

=
+

1

0
)3)(mod()(

L

i
iif xP

GlimmerHMM uses 3-periodic ICMs for coding and homogeneous (non-periodic)
ICMs for noncoding DNA.

Coding vs Non-coding

Signal Sensors
Signals – short sequence patterns in the genomic DNA that are recognized by
the cellular machinery.

…ACTGATGCGCGATTAGAGTCATGGCGATGCATCTAGCTAGCTATATCGCGTAGCTAGCTAGCTGATCTACTATCGTAGC…

Signal sensor

We slide a fixed-length model or “window” along the DNA and evaluate
score(signal) at each point:

When the score is greater than some threshold (determined empirically to result in
a desired sensitivity), we remember this position as being the potential site of a
signal.

The most common signal sensor is the Weight Matrix:

A
100%

A = 31%
T = 28%
C = 21%
G = 20%

T
100%

G
100%

A = 18%
T = 32%
C = 24%
G = 26%

A = 19%
T = 20%
C = 29%
G = 32%

A = 24%
T = 18%
C = 26%
G = 32%

Identifying Signals In DNA

Splice site prediction

The splice site score is a combination of:
•  first or second order inhomogeneous Markov models on windows around

the acceptor and donor sites
•  Maximal dependence decomposition (MDD) decision trees
•  longer Markov models to capture difference between coding and non-

coding on opposite sides of site (optional)
•  maximal splice site score within 60 bp (optional)

16bp 24bp

 GlimmerHMM architecture

I2 I1 I0

Exon2 Exon1 Exon0

Exon Sngl
Init Exon

I1 I2

Exon1 Exon2

Term Exon

Term Exon

I0

Exon0

Exon Sngl
Init Exon

+ forward strand
- backward strand

Phase-specific introns

Four exon types

•  Uses GHMM to model
gene structure (explicit
length modeling)
•  WAM and MDD for splice
sites
•  ICMs for exons, introns
and intergenic regions
•  Different model parameters
for regions with different GC
content
•  Can emit a graph of high-
scoring ORFS

Intergenic

Given a sequence S, we would like to determine the parse φ of that sequence
which segments the DNA into the most likely exon/intron structure:

The parse φ consists of the coordinates of the predicted exons, and corresponds
to the precise sequence of states during the operation of the GHMM (and their
duration, which equals the number of symbols each state emits).

This is the same as in an HMM except that in the HMM each state emits bases
with fixed probability, whereas in the GHMM each state emits an entire feature
such as an exon or intron.

parse φ

initial interior final

AGCTAGCAGTCGATCATGGCATTATCGGCCGTAGTACGTAGCAGTAGCTAGTAGCAGTCGATAGTAGCATTATCGGCCGTAGCTACGTAGCGTAGCTC

sequence S

prediction

Gene Prediction with a GHMM

Evaluation of Gene Finding Programs

Nucleotide level accuracy

FNTP
TPSn
+

=

TN FP FN TN TN TP FN TP FN

REALITY

PREDICTION

Sensitivity:

Specificity:
FPTP

TPSp
+

=

More Measures of Prediction Accuracy

Exon level accuracy

exons actual ofnumber
exonscorrect ofnumber

==
AE
TEExonSn

REALITY

PREDICTION

WRONG
EXON

CORRECT
EXON

MISSING
EXON

exons predicted ofnumber
exonscorrect ofnumber

==
PE
TEExonSp

GlimmerHMM is a high-performance ab
initio gene finder

• All three programs were tested on a test data set of 809 genes, which did not
overlap with the training data set of GlimmerHMM.
• All genes were confirmed by full-length Arabidopsis cDNAs and carefully
inspected to remove homologues.

Arabidopsis thaliana test results

Nucleotide Exon Gene
Sn Sp Acc Sn Sp Acc Sn Sp Acc

GlimmerHMM 97 99 98 84 89 86.5 60 61 60.5

SNAP 96 99 97.5 83 85 84 60 57 58.5

Genscan+ 93 99 96 74 81 77.5 35 35 35

Nuc
Sens

Nuc
Spec

Nuc
Acc

Exon
Sens

Exon
Spec

Exon
Acc

Exact
Genes

GlimmerHMM 86% 72% 79% 72% 62% 67% 17%

Genscan 86% 68% 77% 69% 60% 65% 13%

GlimmerHMM’s performace compared to Genscan on 963 human RefSeq
genes selected randomly from all 24 chromosomes, non-overlapping with the
training set. The test set contains 1000 bp of untranslated sequence on either
side (5' or 3') of the coding portion of each gene.

GlimmerHMM on human data

Summary
•  Prokaryotic gene finding distinguishes between genes

and random ORFs
–  Prokaryotic genes have simple structure and are largely

homogenous, making it relatively easy to recognize their
sequence composition

•  Eukaryotic gene finding identifies the genome-wide
most probable gene models (set of exons)
–  GHMM to enforce overall gene structure, separate models to

score splicing/transcription signals
–  Accuracy depends to a large extent on the quality of the

training data
•  All future genome projects will be accompanied by mRNAseq

Break

Review

Exact Matching
•  Explain the Brute Force search algorithm (algorithm sketch,

running time, space requirement)

1.  Suffix Arrays

2.  Hash Tables

3.  How many times do we expected GATTACA to be in the

human genome (3Gbp), barley (6GB) or pine (24GB)?

Sequence Alignment
1.  What is a good scoring scheme for aligning:

English words? Illumina Reads? Gene Sequences? Genomes?

2.  Explain Dynamic Programming for computing edit
distance

3.  BLAST

4.  Bowtie

Graphs and Assembly
1.  How do I compute the shortest path

between 2 nodes and how long does it take?

2.  Mark connected components in a graph?

3.  Shortest path visiting all nodes?

4.  Describe Genome Assembly

5.  How do we detect mis-assemblies?

Gene Finding
1.  Describe Prokaryotic Gene Finding

2.  Describe Eukaryotic gene finding

3.  What is an Markov Chain?
–  IMM? ICM? HMM? GHMM?

4.  What do the Forward and Viterbi Algorithms Compute

CS Fundamentals
1.  Order these running times

O(lg n), O(2n), O(n100), O(n2), O(n!) O(nlgn), O(n(lgn)(lgn)), O(1), O(1.5n)

2.  Describe Selection Sort
3.  QuickSort
4.  Bucket Sort

5.  Describe Recursion
6.  Dynamic Programming
7.  Branch-and-Bound
8.  Greedy Algorithm

9.  Describe an NP-complete problem

Supplemental

80

Learning in HMMs:
The E-M algorithm

•  In order to learn the parameters in an
“empty” HMM, we need:
– The topology of the HMM
– Data - the more the better

•  The learning algorithm is called “Estimate-
Maximize” or E-M
– Also called the Forward-Backward algorithm
– Also called the Baum-Welch algorithm

81

An untrained HMM

82

Some HMM training data
•  CACAACAAAACCCCCCACAA
•  ACAACACACACACACACCAAAC
•  CAACACACAAACCCC
•  CAACCACCACACACACACCCCA
•  CCCAAAACCCCAAAAACCC
•  ACACAAAAAACCCAACACACAACA
•  ACACAACCCCAAAACCACCAAAAA

83

Step 1: Guess all the probabilities

•  We can start with random probabilities, the
learning algorithm will adjust them

•  If we can make good guesses, the results will
generally be better

84

Step 2: the Forward algorithm

•  Reminder: each box in the trellis contains a
value αi(t)

αi(t) is the probability that our HMM has
generated the sequence y1, y2, …, yt and has
ended up in state i.

85

Reminder: notations
•  sequence of length T:

•  all sequences of length T:

•  Path of length T+1 generates Y:

•  All paths: €

y1
T

€

Y1
T

€

x1
T +1

€

X1
T +1

86

Step 3: the Backward algorithm
•  Next we need to compute βi(t) using a

Backward computation

βi(t) is the probability that our HMM will
generate the rest of the sequence yt+1,yt+2, …,
yT beginning in state i

87

A trellis for the Backward Algorithm

State

0.0

1.0

S1

S2

Time
t=0 t=2 t=3 t=1

Output: A C C
(0.9)(0.7)(1.0)

+

+

(0.6)(0.2)(0.0) 0.2

0.63

88

A trellis for the Backward Algorithm (2)

State

0.2 .15 0.0

0.63 .415 1.0

S1

S2

Time
t=0 t=2 t=3 t=1

Output: A C C
(0.9)(0.7)(1.0)

+

+

(0.6)(0.2)(0.0)

(0.9)(0.7)(0.63)

+

+

(0.6)(0.2)(0.2) .024 + .126 = .15

.397 + .018 = .415

89

A trellis for the Backward Algorithm (3)

State

0.2 .15 0.0

0.63 .415 1.0

S1

S2

Time
t=0 t=2 t=3 t=1

Output: A C C
(0.9)(0.7)(1.0)

+

+

(0.6)(0.2)(0.0)

(0.9)(0.7)(0.63)

+

+

(0.6)(0.2)(0.2) (0.6)(0.8)(0.15)

(0.9)(0.3)(0.415)

.155

.114

.072 + .083 = .155

.112 + .0015 = .1135

90

Step 4: Re-estimate the
probabilities

•  After running the Forward and Backward
algorithms once, we can re-estimate all the
probabilities in the HMM

•  αSF is the prob. that the HMM generated the
entire sequence

•  Nice property of E-M: the value of αSF never
decreases; it converges to a local maximum

•  We can read off α and β values from Forward
and Backward trellises

91

Compute new transition
probabilities

•  γ is the probability of making transition i-j at
time t, given the observed output
– γ is dependent on data, plus it only applies for

one time step; otherwise it is just like aij(t)

€

γ ij t() = P(Xt = i,Xt+1 = j | y1
T)

€

γ ij t() =
α i(t −1)aijbij (yt)β j (t)

αSF

92

What is gamma?

•  Sum γ over all time steps, then we get the
expected number of times that the transition
i-j was made while generating the sequence
Y:

€

C1 = γ ij (t)
t=1

T

∑

93

How many times did we leave i?

•  Sum γ over all time steps and all states that can follow i,
then we get the expected number of times that the
transition i-x as made for any state x:

€

C2 = γ ik (t)
k
∑

t=1

T

∑

94

Recompute transition probability

€

aij =
C1
C2

In other words, probability of going from state i to j is estimated by
counting how often we took it for our data (C1), and dividing that by
how often we went from i to other states (C2)

95

Recompute output probabilities
•  Originally these were bij(k) values
•  We need:

– expected number of times that we made the
transition i-j and emitted the symbol k

– The expected number of times that we made the
transition i-j

96

New estimate of bij(k)

€

bij (k) =

γ ij (t)
t:yt = k
∑

γ ij (t)
t=1

T

∑

97

Step 5: Go to step 2
•  Step 2 is Forward Algorithm
•  Repeat entire process until the probabilities converge

–  Usually this is rapid, 10-15 iterations

•  “Estimate-Maximize” because the algorithm first
estimates probabilities, then maximizes them based on
the data

•  “Forward-Backward” refers to the two computationally
intensive steps in the algorithm

